Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(12): e0288668, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38150460

RESUMEN

The intracranial pressure is implicated in many homeostatic processes in the brain and is a fundamental parameter in several diseases such as e.g. idiopathic normal pressure hydrocephalus. The presence of a small but persistent pulsatile intracranial pulsatile transmantle pressure gradient (on the order of a few mmHg/m at peak) has recently been demonstrated in hydrocephalus subjects. A key question is whether pulsatile intracranial pressure and displacements can be induced by a small pressure gradient originating from the brain surface alone. In this study, we model the brain parenchyma as either a linearly elastic or a poroelastic medium, and impose a pulsatile pressure gradient acting between the ventricular and the pial surfaces but no additional external forces. Using this high-resolution physics-based model, we use in vivo pulsatile pressure gradients from subjects with idiopathic normal pressure hydrocephalus to compute parenchyma displacement, volume change, fluid pressure, and fluid flux. The resulting displacement field is pulsatile and in qualitatively and quantitatively good agreement with the literature, both with elastic and poroelastic models. However, the pulsatile forces on the boundaries are not sufficient for pressure pulse propagation through the brain parenchyma. Our results suggest that pressure differences at the brain surface, originating e.g. from pulsating arteries surrounding the brain, are not alone sufficient to drive interstitial fluid flow within the brain parenchyma and that potential pressure gradients found within the parenchyma rather arise from a large portion of the blood vessel network, including smaller blood vessels within the brain parenchyma itself.


Asunto(s)
Hidrocéfalo Normotenso , Hidrocefalia , Humanos , Encéfalo , Presión Intracraneal , Simulación por Computador , Presión , Flujo Pulsátil
2.
Fluids Barriers CNS ; 20(1): 62, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596635

RESUMEN

Whether you are reading, running or sleeping, your brain and its fluid environment continuously interacts to distribute nutrients and clear metabolic waste. Yet, the precise mechanisms for solute transport within the human brain have remained hard to quantify using imaging techniques alone. From multi-modal human brain MRI data sets in sleeping and sleep-deprived subjects, we identify and quantify CSF tracer transport parameters using forward and inverse subject-specific computational modelling. Our findings support the notion that extracellular diffusion alone is not sufficient as a brain-wide tracer transport mechanism. Instead, we show that human MRI observations align well with transport by either by an effective diffusion coefficent 3.5[Formula: see text] that of extracellular diffusion in combination with local clearance rates corresponding to a tracer half-life of up to 5 h, or by extracellular diffusion augmented by advection with brain-wide average flow speeds on the order of 1-9 [Formula: see text]m/min. Reduced advection fully explains reduced tracer clearance after sleep-deprivation, supporting the role of sleep and sleep deprivation on human brain clearance.


Asunto(s)
Privación de Sueño , Sueño , Humanos , Privación de Sueño/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Biofisica , Imagen por Resonancia Magnética
3.
PLoS Comput Biol ; 19(7): e1010996, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37478153

RESUMEN

The complex interplay between chemical, electrical, and mechanical factors is fundamental to the function and homeostasis of the brain, but the effect of electrochemical gradients on brain interstitial fluid flow, solute transport, and clearance remains poorly quantified. Here, via in-silico experiments based on biophysical modeling, we estimate water movement across astrocyte cell membranes, within astrocyte networks, and within the extracellular space (ECS) induced by neuronal activity, and quantify the relative role of different forces (osmotic, hydrostatic, and electrical) on transport and fluid flow under such conditions. We find that neuronal activity alone may induce intracellular fluid velocities in astrocyte networks of up to 14µm/min, and fluid velocities in the ECS of similar magnitude. These velocities are dominated by an osmotic contribution in the intracellular compartment; without it, the estimated fluid velocities drop by a factor of ×34-45. Further, the compartmental fluid flow has a pronounced effect on transport: advection accelerates ionic transport within astrocytic networks by a factor of ×1-5 compared to diffusion alone.


Asunto(s)
Astrocitos , Espacio Extracelular , Astrocitos/metabolismo , Espacio Extracelular/metabolismo , Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Difusión
4.
Fluids Barriers CNS ; 19(1): 84, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36320038

RESUMEN

BACKGROUND: Today's availability of medical imaging and computational resources set the scene for high-fidelity computational modelling of brain biomechanics. The brain and its environment feature a dynamic and complex interplay between the tissue, blood, cerebrospinal fluid (CSF) and interstitial fluid (ISF). Here, we design a computational platform for modelling and simulation of intracranial dynamics, and assess the models' validity in terms of clinically relevant indicators of brain pulsatility. Focusing on the dynamic interaction between tissue motion and ISF/CSF flow, we treat the pulsatile cerebral blood flow as a prescribed input of the model. METHODS: We develop finite element models of cardiac-induced fully coupled pulsatile CSF flow and tissue motion in the human brain environment. The three-dimensional model geometry is derived from magnetic resonance images (MRI) and features a high level of detail including the brain tissue, the ventricular system, and the cranial subarachnoid space (SAS). We model the brain parenchyma at the organ-scale as an elastic medium permeated by an extracellular fluid network and describe flow of CSF in the SAS and ventricles as viscous fluid movement. Representing vascular expansion during the cardiac cycle, a prescribed pulsatile net blood flow distributed over the brain parenchyma acts as the driver of motion. Additionally, we investigate the effect of model variations on a set of clinically relevant quantities of interest. RESULTS: Our model predicts a complex interplay between the CSF-filled spaces and poroelastic parenchyma in terms of ICP, CSF flow, and parenchymal displacements. Variations in the ICP are dominated by their temporal amplitude, but with small spatial variations in both the CSF-filled spaces and the parenchyma. Induced by ICP differences, we find substantial ventricular and cranial-spinal CSF flow, some flow in the cranial SAS, and small pulsatile ISF velocities in the brain parenchyma. Moreover, the model predicts a funnel-shaped deformation of parenchymal tissue in dorsal direction at the beginning of the cardiac cycle. CONCLUSIONS: Our model accurately depicts the complex interplay of ICP, CSF flow and brain tissue movement and is well-aligned with clinical observations. It offers a qualitative and quantitative platform for detailed investigation of coupled intracranial dynamics and interplay, both under physiological and pathophysiological conditions.


Asunto(s)
Ventrículos Cerebrales , Espacio Subaracnoideo , Humanos , Ventrículos Cerebrales/fisiología , Flujo Pulsátil/fisiología , Simulación por Computador , Encéfalo , Imagen por Resonancia Magnética , Líquido Cefalorraquídeo/fisiología
5.
Front Bioeng Biotechnol ; 10: 932469, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172015

RESUMEN

In this paper, we used a computational model to estimate the clearance of a tracer driven by the circulation of cerebrospinal fluid (CSF) produced in the choroid plexus (CP) located within the lateral ventricles. CSF was assumed to exit the subarachnoid space (SAS) via different outflow routes such as the parasagittal dura, cribriform plate, and/or meningeal lymphatics. We also modelled a reverse case where fluid was produced within the spinal canal and absorbed in the choroid plexus in line with observations on certain iNPH patients. No directional interstitial fluid flow was assumed within the brain parenchyma. Tracers were injected into the foramen magnum. The models demonstrate that convection in the subarachnoid space yields rapid clearance from both the SAS and the brain interstitial fluid and can speed up intracranial clearance from years, as would be the case for purely diffusive transport, to days.

6.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35365505

RESUMEN

Cortical spreading depression (CSD) is a wave of pronounced depolarization of brain tissue accompanied by substantial shifts in ionic concentrations and cellular swelling. Here, we validate a computational framework for modeling electrical potentials, ionic movement, and cellular swelling in brain tissue during CSD. We consider different model variations representing wild-type (WT) or knock-out/knock-down mice and systematically compare the numerical results with reports from a selection of experimental studies. We find that the data for several CSD hallmarks obtained computationally, including wave propagation speed, direct current shift duration, peak in extracellular K+ concentration as well as a pronounced shrinkage of extracellular space (ECS) are well in line with what has previously been observed experimentally. Further, we assess how key model parameters including cellular diffusivity, structural ratios, membrane water and/or K+ permeabilities affect the set of CSD characteristics.


Asunto(s)
Depresión de Propagación Cortical , Animales , Encéfalo , Espacio Extracelular , Ratones
7.
Int J Numer Method Biomed Eng ; 38(1): e3542, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34716985

RESUMEN

Mathematical modeling and simulation is a promising approach to personalized cancer medicine. Yet, the complexity, heterogeneity and multi-scale nature of cancer pose significant computational challenges. Coupling discrete cell-based models with continuous models using hybrid cellular automata (CA) is a powerful approach for mimicking biological complexity and describing the dynamical exchange of information across different scales. However, when clinically relevant cancer portions are taken into account, such models become computationally very expensive. While efficient parallelization techniques for continuous models exist, their coupling with discrete models, particularly CA, necessitates more elaborate solutions. Building upon FEniCS, a popular and powerful scientific computing platform for solving partial differential equations, we developed parallel algorithms to link stochastic CA with differential equations (https://bitbucket.org/HTasken/cansim). The algorithms minimize the communication between processes that share CA neighborhood values while also allowing for reproducibility during stochastic updates. We demonstrated the potential of our solution on a complex hybrid cellular automaton model of breast cancer treated with combination chemotherapy. On a single-core processor, we obtained nearly linear scaling with an increasing problem size, whereas weak parallel scaling showed moderate growth in solving time relative to increase in problem size. Finally, we applied the algorithm to a problem that is 500 times larger than previous work, allowing us to run personalized therapy simulations based on heterogeneous cell density and tumor perfusion conditions estimated from magnetic resonance imaging data on an unprecedented scale.


Asunto(s)
Neoplasias de la Mama , Autómata Celular , Algoritmos , Neoplasias de la Mama/terapia , Simulación por Computador , Femenino , Humanos , Modelos Biológicos , Reproducibilidad de los Resultados , Procesos Estocásticos
8.
Math Med Biol ; 38(4): 516-551, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34791309

RESUMEN

Mathematical modelling of ionic electrodiffusion and water movement is emerging as a powerful avenue of investigation to provide a new physiological insight into brain homeostasis. However, in order to provide solid answers and resolve controversies, the accuracy of the predictions is essential. Ionic electrodiffusion models typically comprise non-trivial systems of non-linear and highly coupled partial and ordinary differential equations that govern phenomena on disparate time scales. Here, we study numerical challenges related to approximating these systems. We consider a homogenized model for electrodiffusion and osmosis in brain tissue and present and evaluate different associated finite element-based splitting schemes in terms of their numerical properties, including accuracy, convergence and computational efficiency for both idealized scenarios and for the physiologically relevant setting of cortical spreading depression (CSD). We find that the schemes display optimal convergence rates in space for problems with smooth manufactured solutions. However, the physiological CSD setting is challenging: we find that the accurate computation of CSD wave characteristics (wave speed and wave width) requires a very fine spatial and fine temporal resolution.


Asunto(s)
Encéfalo , Movimientos del Agua , Simulación por Computador
9.
Sci Rep ; 11(1): 16085, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373476

RESUMEN

Fluid flow in perivascular spaces is recognized as a key component underlying brain transport and clearance. An important open question is how and to what extent differences in vessel type or geometry affect perivascular fluid flow and transport. Using computational modelling in both idealized and image-based geometries, we study and compare fluid flow and solute transport in pial (surface) periarterial and perivenous spaces. Our findings demonstrate that differences in geometry between arterial and venous pial perivascular spaces (PVSs) lead to higher net CSF flow, more rapid tracer transport and earlier arrival times of injected tracers in periarterial spaces compared to perivenous spaces. These findings can explain the experimentally observed rapid appearance of tracers around arteries, and the delayed appearance around veins without the need of a circulation through the parenchyma, but rather by direct transport along the PVSs.

10.
Int J Numer Method Biomed Eng ; 37(1): e3412, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33174347

RESUMEN

Efficient uncertainty quantification algorithms are key to understand the propagation of uncertainty-from uncertain input parameters to uncertain output quantities-in high resolution mathematical models of brain physiology. Advanced Monte Carlo methods such as quasi Monte Carlo (QMC) and multilevel Monte Carlo (MLMC) have the potential to dramatically improve upon standard Monte Carlo (MC) methods, but their applicability and performance in biomedical applications is underexplored. In this paper, we design and apply QMC and MLMC methods to quantify uncertainty in a convection-diffusion model of tracer transport within the brain. We show that QMC outperforms standard MC simulations when the number of random inputs is small. MLMC considerably outperforms both QMC and standard MC methods and should therefore be preferred for brain transport models.


Asunto(s)
Encéfalo , Líquido Extracelular , Encéfalo/diagnóstico por imagen , Difusión , Método de Montecarlo , Incertidumbre
11.
PLoS One ; 15(12): e0244442, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33373419

RESUMEN

Flow of cerebrospinal fluid (CSF) in perivascular spaces (PVS) is one of the key concepts involved in theories concerning clearance from the brain. Experimental studies have demonstrated both net and oscillatory movement of microspheres in PVS (Mestre et al. (2018), Bedussi et al. (2018)). The oscillatory particle movement has a clear cardiac component, while the mechanisms involved in net movement remain disputed. Using computational fluid dynamics, we computed the CSF velocity and pressure in a PVS surrounding a cerebral artery subject to different forces, representing arterial wall expansion, systemic CSF pressure changes and rigid motions of the artery. The arterial wall expansion generated velocity amplitudes of 60-260 µm/s, which is in the upper range of previously observed values. In the absence of a static pressure gradient, predicted net flow velocities were small (<0.5 µm/s), though reaching up to 7 µm/s for non-physiological PVS lengths. In realistic geometries, a static systemic pressure increase of physiologically plausible magnitude was sufficient to induce net flow velocities of 20-30 µm/s. Moreover, rigid motions of the artery added to the complexity of flow patterns in the PVS. Our study demonstrates that the combination of arterial wall expansion, rigid motions and a static CSF pressure gradient generates net and oscillatory PVS flow, quantitatively comparable with experimental findings. The static CSF pressure gradient required for net flow is small, suggesting that its origin is yet to be determined.


Asunto(s)
Líquido Cefalorraquídeo/fisiología , Sistema Glinfático/fisiología , Modelos Cardiovasculares , Animales , Simulación por Computador , Humanos , Ratones , Flujo Pulsátil/fisiología
12.
Front Neuroinform ; 14: 11, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32269519

RESUMEN

Mathematical models for excitable cells are commonly based on cable theory, which considers a homogenized domain and spatially constant ionic concentrations. Although such models provide valuable insight, the effect of altered ion concentrations or detailed cell morphology on the electrical potentials cannot be captured. In this paper, we discuss an alternative approach to detailed modeling of electrodiffusion in neural tissue. The mathematical model describes the distribution and evolution of ion concentrations in a geometrically-explicit representation of the intra- and extracellular domains. As a combination of the electroneutral Kirchhoff-Nernst-Planck (KNP) model and the Extracellular-Membrane-Intracellular (EMI) framework, we refer to this model as the KNP-EMI model. Here, we introduce and numerically evaluate a new, finite element-based numerical scheme for the KNP-EMI model, capable of efficiently and flexibly handling geometries of arbitrary dimension and arbitrary polynomial degree. Moreover, we compare the electrical potentials predicted by the KNP-EMI and EMI models. Finally, we study ephaptic coupling induced in an unmyelinated axon bundle and demonstrate how the KNP-EMI framework can give new insights in this setting.

13.
Fluids Barriers CNS ; 17(1): 29, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299464

RESUMEN

BACKGROUND: Infusion testing is a common procedure to determine whether shunting will be beneficial in patients with normal pressure hydrocephalus. The method has a well-developed theoretical foundation and corresponding mathematical models that describe the CSF circulation from the choroid plexus to the arachnoid granulations. Here, we investigate to what extent the proposed glymphatic or paravascular pathway (or similar pathways) modifies the results of the traditional mathematical models. METHODS: We used a compartment model to estimate pressure in the subarachnoid space and the paravascular spaces. For the arachnoid granulations, the cribriform plate and the glymphatic circulation, resistances were calculated and used to estimate pressure and flow before and during an infusion test. Finally, different variations to the model were tested to evaluate the sensitivity of selected parameters. RESULTS: At baseline intracranial pressure (ICP), we found a very small paravascular flow directed into the subarachnoid space, while 60% of the fluid left through the arachnoid granulations and 40% left through the cribriform plate. However, during the infusion, 80% of the fluid left through the arachnoid granulations, 20% through the cribriform plate and flow in the PVS was stagnant. Resistance through the glymphatic system was computed to be 2.73 mmHg/(mL/min), considerably lower than other fluid pathways, giving non-realistic ICP during infusion if combined with a lymphatic drainage route. CONCLUSIONS: The relative distribution of CSF flow to different clearance pathways depends on ICP, with the arachnoid granulations as the main contributor to outflow. As such, ICP increase is an important factor that should be addressed when determining the pathways of injected substances in the subarachnoid space. Our results suggest that the glymphatic resistance is too high to allow for pressure driven flow by arterial pulsations and at the same time too small to allow for a direct drainage route from PVS to cervical lymphatics.


Asunto(s)
Líquido Cefalorraquídeo/fisiología , Sistema Glinfático/fisiología , Hipertensión Intracraneal/fisiopatología , Presión Intracraneal/fisiología , Modelos Biológicos , Espacio Subaracnoideo/fisiología , Humanos , Hidrodinámica
14.
Fluids Barriers CNS ; 16(1): 32, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31564250

RESUMEN

BACKGROUND: Influx and clearance of substances in the brain parenchyma occur by a combination of diffusion and convection, but the relative importance of these mechanisms is unclear. Accurate modeling of tracer distributions in the brain relies on parameters that are partially unknown and with literature values varying by several orders of magnitude. In this work, we rigorously quantified the variability of tracer distribution in the brain resulting from uncertainty in diffusion and convection model parameters. METHODS: Using the convection-diffusion-reaction equation, we simulated tracer distribution in the brain parenchyma after intrathecal injection. Several models were tested to assess the uncertainty both in type of diffusion and velocity fields and also the importance of their magnitude. Our results were compared with experimental MRI results of tracer enhancement. RESULTS: In models of pure diffusion, the expected amount of tracer in the gray matter reached peak value after 15 h, while the white matter did not reach peak within 24 h with high likelihood. Models of the glymphatic system were similar qualitatively to the models of pure diffusion with respect to expected time to peak but displayed less variability. However, the expected time to peak was reduced to 11 h when an additional directionality was prescribed for the glymphatic circulation. In a model including drainage directly from the brain parenchyma, time to peak occured after 6-8 h for the gray matter. CONCLUSION: Even when uncertainties are taken into account, we find that diffusion alone is not sufficient to explain transport of tracer deep into the white matter as seen in experimental data. A glymphatic velocity field may increase transport if a large-scale directional structure is included in the glymphatic circulation.


Asunto(s)
Encéfalo/metabolismo , Convección , Difusión , Sistema Glinfático/metabolismo , Modelos Neurológicos , Tejido Parenquimatoso/metabolismo , Animales , Transporte Biológico , Líquido Cefalorraquídeo/metabolismo , Líquido Extracelular/metabolismo , Sustancia Gris/metabolismo , Humanos , Sustancia Blanca/metabolismo
15.
Sci Rep ; 9(1): 9732, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278278

RESUMEN

Current theories suggest that waste solutes are cleared from the brain via cerebrospinal fluid (CSF) flow, driven by pressure pulsations of possibly both cardiac and respiratory origin. In this study, we explored the importance of respiratory versus cardiac pressure gradients for CSF flow within one of the main conduits of the brain, the cerebral aqueduct. We obtained overnight intracranial pressure measurements from two different locations in 10 idiopathic normal pressure hydrocephalus (iNPH) patients. The resulting pressure gradients were analyzed with respect to cardiac and respiratory frequencies and amplitudes (182,000 cardiac and 48,000 respiratory cycles). Pressure gradients were used to compute CSF flow in simplified and patient-specific models of the aqueduct. The average ratio between cardiac over respiratory flow volume was 0.21 ± 0.09, even though the corresponding ratio between the pressure gradient amplitudes was 2.85 ± 1.06. The cardiac cycle was 0.25 ± 0.04 times the length of the respiratory cycle, allowing the respiratory pressure gradient to build considerable momentum despite its small magnitude. No significant differences in pressure gradient pulsations were found in the sleeping versus awake state. Pressure gradients underlying CSF flow in the cerebral aqueduct are dominated by cardiac pulsations, but induce CSF flow volumes dominated by respiration.


Asunto(s)
Acueducto del Mesencéfalo/fisiopatología , Hidrocéfalo Normotenso/líquido cefalorraquídeo , Pruebas de Función Cardíaca , Humanos , Hidrocéfalo Normotenso/fisiopatología , Modelación Específica para el Paciente , Flujo Pulsátil , Pruebas de Función Respiratoria
16.
Cancer Res ; 79(16): 4293-4304, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31118201

RESUMEN

The usefulness of mechanistic models to disentangle complex multiscale cancer processes, such as treatment response, has been widely acknowledged. However, a major barrier for multiscale models to predict treatment outcomes in individual patients lies in their initialization and parametrization, which needs to reflect individual cancer characteristics accurately. In this study, we use multitype measurements acquired routinely on a single breast tumor, including histopathology, MRI, and molecular profiling, to personalize parts of a complex multiscale model of breast cancer treated with chemotherapeutic and antiangiogenic agents. The model accounts for drug pharmacokinetics and pharmacodynamics. We developed an open-source computer program that simulates cross-sections of tumors under 12-week therapy regimens and used it to individually reproduce and elucidate treatment outcomes of 4 patients. Two of the tumors did not respond to therapy, and model simulations were used to suggest alternative regimens with improved outcomes dependent on the tumor's individual characteristics. It was determined that more frequent and lower doses of chemotherapy reduce tumor burden in a low proliferative tumor while lower doses of antiangiogenic agents improve drug penetration in a poorly perfused tumor. Furthermore, using this model, we were able to correctly predict the outcome in another patient after 12 weeks of treatment. In summary, our model bridges multitype clinical data to shed light on individual treatment outcomes. SIGNIFICANCE: Mathematical modeling is used to validate possible mechanisms of tumor growth, resistance, and treatment outcome.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Medicina de Precisión/métodos , Adulto , Bevacizumab/uso terapéutico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/genética , Simulación por Computador , Femenino , Humanos , Persona de Mediana Edad , Modelos Biológicos , Resultado del Tratamiento
17.
Int J Numer Method Biomed Eng ; 35(5): e3178, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30632711

RESUMEN

Computational cardiac modelling is a mature area of biomedical computing and is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and sensitivity analysis are important parts of such an assessment. In this study, we apply UQ in computational heart mechanics to study uncertainty both in material parameters characterizing global myocardial stiffness and in the local muscle fiber orientation that governs tissue anisotropy. The uncertainty analysis is performed using the polynomial chaos expansion (PCE) method, which is a nonintrusive meta-modeling technique that surrogates the original computational model with a series of orthonormal polynomials over the random input parameter space. In addition, in order to study variability in the muscle fiber architecture, we model the uncertainty in orientation of the fiber field as an approximated random field using a truncated Karhunen-Loéve expansion. The results from the UQ and sensitivity analysis identify clear differences in the impact of various material parameters on global output quantities. Furthermore, our analysis of random field variations in the fiber architecture demonstrate a substantial impact of fiber angle variations on the selected outputs, highlighting the need for accurate assignment of fiber orientation in computational heart mechanics models.


Asunto(s)
Ventrículos Cardíacos/citología , Ventrículos Cardíacos/fisiopatología , Modelos Cardiovasculares , Calibración , Humanos , Método de Montecarlo , Miocitos Cardíacos , Reproducibilidad de los Resultados , Incertidumbre , Función Ventricular
18.
Biomech Model Mechanobiol ; 17(5): 1317-1329, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29774440

RESUMEN

In myocardial infarction, muscle tissue of the heart is damaged as a result of ceased or severely impaired blood flow. Survivors have an increased risk of further complications, possibly leading to heart failure. Material properties play an important role in determining post-infarction outcome. Due to spatial variation in scarring, material properties can be expected to vary throughout the tissue of a heart after an infarction. In this study we propose a data assimilation technique that can efficiently estimate heterogeneous elastic material properties in a personalized model of cardiac mechanics. The proposed data assimilation is tested on a clinical dataset consisting of regional left ventricular strains and in vivo pressures during atrial systole from a human with a myocardial infarction. Good matches to regional strains are obtained, and simulated equi-biaxial tests are carried out to demonstrate regional heterogeneities in stress-strain relationships. A synthetic data test shows a good match of estimated versus ground truth material parameter fields in the presence of no to low levels of noise. This study is the first to apply adjoint-based data assimilation to the important problem of estimating cardiac elastic heterogeneities in 3-D from medical images.


Asunto(s)
Elasticidad , Corazón/fisiopatología , Infarto del Miocardio/fisiopatología , Algoritmos , Corazón/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Infarto del Miocardio/diagnóstico por imagen , Análisis Numérico Asistido por Computador , Presión , Estrés Mecánico
19.
Artículo en Inglés | MEDLINE | ID: mdl-28744962

RESUMEN

Computational modeling may provide a quantitative framework for integrating multiscale data to gain insight into mechanisms of heart disease, identify and test pharmacological and electrical therapy and interventions, and support clinical decisions. Patient-specific computational cardiac models can help guide such procedures, and cardiac inverse modeling is a promising alternative to adequately personalize these models. Indeed, full cardiac inverse modeling is currently becoming computationally feasible; however, fundamental work to assess the feasibility of emerging techniques is still needed. In this study, we use a partial differential equation-constrained optimal control approach to numerically investigate the identifiability of an initial activation sequence from synthetic (partial) observations of the extracellular potential using the bidomain approximation and 2D representations of cardiac tissue. Our results demonstrate that activation times and duration of several stimuli can be recovered even with high levels of noise, that it is sufficient to sample the observations at the electrocardiogram-relevant sampling frequency of 1 kHz, and that spatial resolutions that are coarser than the standard in electrophysiological simulations can be used. The optimization of activation times is still effective when synthetic data are generated with a different cell membrane kinetics model than optimized for. The findings thus indicate that the presented approach has potential for finding activation sequences from clinical data modalities, as an extension to existing cardiac imaging approaches.


Asunto(s)
Corazón/fisiología , Modelos Teóricos , Algoritmos , Electrocardiografía , Humanos
20.
Artículo en Inglés | MEDLINE | ID: mdl-28039961

RESUMEN

Computational models of cardiac mechanics, personalized to a patient, offer access to mechanical information above and beyond direct medical imaging. Additionally, such models can be used to optimize and plan therapies in-silico, thereby reducing risks and improving patient outcome. Model personalization has traditionally been achieved by data assimilation, which is the tuning or optimization of model parameters to match patient observations. Current data assimilation procedures for cardiac mechanics are limited in their ability to efficiently handle high-dimensional parameters. This restricts parameter spatial resolution, and thereby the ability of a personalized model to account for heterogeneities that are often present in a diseased or injured heart. In this paper, we address this limitation by proposing an adjoint gradient-based data assimilation method that can efficiently handle high-dimensional parameters. We test this procedure on a synthetic data set and provide a clinical example with a dyssynchronous left ventricle with highly irregular motion. Our results show that the method efficiently handles a high-dimensional optimization parameter and produces an excellent agreement for personalized models to both synthetic and clinical data.


Asunto(s)
Ventrículos Cardíacos/fisiopatología , Fenómenos Biomecánicos , Ventrículos Cardíacos/anatomía & histología , Humanos , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...